Perfect Polynomials
modulo 2

Ugur Caner Cengiz

Lake Forest College

April 7, 2015
Outline

1. Definitions
 - modulo 2
 - What is "Perfect"?
 - Perfect Polynomials
Outline

1 Definitions
 - modulo 2
 - What is "Perfect"?
 - Perfect Polynomials

2 Previous Research
 - Others’
 - Ours

Ugur Caner Cengiz
Perfect Polynomials
Student Symposium 2015
1 Definitions
 • modulo 2
 • What is "Perfect"?
 • Perfect Polynomials

2 Previous Research
 • Others’
 • Ours

3 Our Research
 • The Program
 • Main Results
 • Speed!!!
What do you mean by "modulo 2"?

In simple terms, ‘a mod b’ gives the remainder when integer a is divided by non-zero integer b.
What do you mean by "modulo 2"?

- In simple terms, ‘a mod b’ gives the remainder when integer a is divided by non-zero integer b.

- Therefore, mod 2 is very simple: if the number is odd, then it is equivalent to 1 and if even, then it is equivalent to 0.
What do you mean by "modulo 2"?

- In simple terms, ‘$a \mod b$’ gives the remainder when integer a is divided by non-zero integer b.

- Therefore, mod 2 is very simple: if the number is odd, then it is equivalent to 1 and if even, then it is equivalent to 0.

- $13 \equiv 1$ and $54678 \equiv 0 \pmod{2}$
Perfect Numbers

Sigma function σ

Definition

Lower case Greek letter sigma (σ) symbolizes an arithmetic function that sums the positive divisors of a positive integer.

$$\sigma(n) = \sum_{d|n} d$$

Definition

If $\sigma(n) = 2n$, then n is perfect.

Example
Perfect Numbers
Sigma function σ

Definition
Lower case Greek letter sigma (σ) symbolizes an arithmetic function that sums the positive divisors of a positive integer.

$$\sigma(n) = \sum_{d|n} d$$

Definition
If $\sigma(n) = 2n$, then n is perfect.

Example
- 6
Perfect Numbers
Sigma function σ

Definition
Lower case Greek letter sigma (σ) symbolizes an arithmetic function that sums the positive divisors of a positive integer.

$$\sigma(n) = \sum_{d|n} d$$

Definition
If $\sigma(n) = 2n$, then n is perfect.

Example
- 6
- $\sigma(6) = 1 + 2 + 3 + 6 = 12$
Perfect Numbers
Sigma function σ

Definition
Lower case Greek letter sigma (σ) symbolizes an arithmetic function that sums the positive divisors of a positive integer.

$$\sigma(n) = \sum_{d|n} d$$

Definition
If $\sigma(n) = 2n$, then n is perfect.

Example
- 6
- $\sigma(6) = 1 + 2 + 3 + 6 = 12$
- Hence, 6 is perfect.
Continuing on σ

Theorem

σ is multiplicative over integers.
If $\gcd(m,n) = 1$, then $\sigma(mn) = \sigma(m) \times \sigma(n)$

Example
Continuing on σ

Theorem

σ is multiplicative over integers.

If $\gcd(m,n) = 1$, then $\sigma(mn) = \sigma(m) \times \sigma(n)$

Example

- $6 = 2 \times 3$ where 2 and 3 are prime.
Continuing on σ

Theorem

σ is multiplicative over integers.

If $\gcd(m,n) = 1$, then $\sigma(mn) = \sigma(m) \times \sigma(n)$

Example

- $6 = 2 \times 3$ where 2 and 3 are prime.
- $\sigma(2) = (2 + 1)$ and $\sigma(3) = (3+1)$
Continuing on σ

Theorem

σ is multiplicative over integers.

If $\gcd(m,n) = 1$, then $\sigma(mn) = \sigma(m) \times \sigma(n)$

Example

- $6 = 2 \times 3$ where 2 and 3 are prime.
- $\sigma(2)=(2 + 1)$ and $\sigma(3)=(3+1)$
- $\sigma(2) \times \sigma(3)=3 \times 4 = 12 = \sigma(6)$.
Continuing on σ

Theorem

σ is multiplicative over integers.

If $\gcd(m,n) = 1$, then $\sigma(mn) = \sigma(m) \times \sigma(n)$

Example

- $6 = 2 \times 3$ where 2 and 3 are prime.
- $\sigma(2) = (2 + 1)$ and $\sigma(3) = (3+1)$
- $\sigma(2) \times \sigma(3) = 3 \times 4 = 12 = \sigma(6)$
- $728 = 2^3 \times 7 \times 13$
Continuing on σ

Theorem

σ is multiplicative over integers.

If $\gcd(m,n) = 1$, then $\sigma(mn) = \sigma(m) \times \sigma(n)$

Example

- $6 = 2 \times 3$ where 2 and 3 are prime.
- $\sigma(2) = (2 + 1)$ and $\sigma(3) = (3 + 1)$
- $\sigma(2) \times \sigma(3) = 3 \times 4 = 12 = \sigma(6)$.
- $728 = 2^3 \times 7 \times 13$
- $\sigma(728) = 1 + 2 + 4 + 7 + 8 + 13 + 14 + 26 + 28 + 52 + 56 + 91 + 104 + 182 + 364 + 728 = 1680$
Theorem

\(\sigma\) is multiplicative over integers.
If \(\gcd(m,n) = 1\), then \(\sigma(mn) = \sigma(m) \times \sigma(n)\)

Example

- \(6 = 2 \times 3\) where 2 and 3 are prime.
- \(\sigma(2) = (2 + 1)\) and \(\sigma(3) = (3 + 1)\)
- \(\sigma(2) \times \sigma(3) = 3 \times 4 = 12 = \sigma(6)\).
- \(728 = 2^3 \times 7 \times 13\)
- \(\sigma(728) = 1 + 2 + 4 + 7 + 8 + 13 + 14 + 26 + 28 + 52 + 56 + 91 + 104 + 182 + 364 + 728 = 1680\)
- Note that \(\sigma(p^q) = (p^q + p^{q-1} + \ldots + p + 1)\)
Continuing on σ

Theorem

σ is multiplicative over integers.

If $\gcd(m,n) = 1$, then $\sigma(mn) = \sigma(m) \times \sigma(n)$

Example

- $6 = 2 \times 3$ where 2 and 3 are prime.
- $\sigma(2) = (2 + 1)$ and $\sigma(3) = (3 + 1)$
- $\sigma(2) \times \sigma(3) = 3 \times 4 = 12 = \sigma(6)$.
- $728 = 2^3 \times 7 \times 13$
- $\sigma(728) = 1 + 2 + 4 + 7 + 8 + 13 + 14 + 26 + 28 + 52 + 56 + 91 + 104 + 182 + 364 + 728 = 1680$
- Note that $\sigma(p^q) = (p^q + p^{q-1} + \ldots + p + 1)$
- So, $\sigma(2^3) \times \sigma(7) \times \sigma(13) = (8 + 4 + 2 + 1)(7 + 1)(13 + 1)$
Continuing on σ

Theorem

σ is multiplicative over integers.

If $\gcd(m,n) = 1$, then $\sigma(mn) = \sigma(m) \times \sigma(n)$

Example

- $6 = 2 \times 3$ where 2 and 3 are prime.
- $\sigma(2)=(2 + 1)$ and $\sigma(3)=(3+1)$
- $\sigma(2) \times \sigma(3)=3 \times 4 = 12 = \sigma(6)$.
- $728 = 2^3 \times 7 \times 13$
- $\sigma(728) = 1 + 2 + 4 + 7 + 8 + 13 + 14 + 26 + 28 + 52 + 56 + 91 + 104 + 182 + 364 + 728 = 1680$
- Note that $\sigma(p^q) = (p^q + p^{q-1} + ... + p + 1)$
- So, $\sigma(2^3) \times \sigma(7) \times \sigma(13) = (8 + 4 + 2 + 1)(7 + 1)(13 + 1)$
- $\sigma(2^3) \times \sigma(7) \times \sigma(13) = 15 \times 8 \times 14 = 1680$
Polynomials mod 2

- For a polynomial mod 2, the coefficients are mod 2. Thus,
 \[5x^7 + 9x^6 + 16x^5 + 48x^4 + x^3 + 4x^2 + 71x + 1 \equiv x^7 + x^6 + x^3 + x + 1\]

\(x^2 + 2x + 1^2 \equiv x^2 + 1 \pmod{2}\)
Polynomials mod 2

- For a polynomial mod 2, the coefficients are mod 2. Thus,
 \[5x^7 + 9x^6 + 16x^5 + 48x^4 + x^3 + 4x^2 + 71x + 1 \equiv x^7 + x^6 + x^3 + x + 1\]

- \[x^2 + 1 = 0\] has no real roots. It’s irreducible.
For a polynomial mod 2, the coefficients are mod 2. Thus, $5x^7 + 9x^6 + 16x^5 + 48x^4 + x^3 + 4x^2 + 71x + 1 \equiv x^7 + x^6 + x^3 + x + 1$

$x^2 + 1 = 0$ has no real roots. It's irreducible.

Consider $(x + 1)^2$ modulo 2
Polynomials mod 2

- For a polynomial mod 2, the coefficients are mod 2. Thus,
 \[5x^7 + 9x^6 + 16x^5 + 48x^4 + x^3 + 4x^2 + 71x + 1 \equiv x^7 + x^6 + x^3 + x + 1\]

- \(x^2 + 1 = 0\) has no real roots. It’s irreducible.

- Consider \((x + 1)^2\) modulo 2

\[(x + 1)^2 = (x + 1) \times (x + 1) = x^2 + 2x + 1^2\]
For a polynomial mod 2, the coefficients are mod 2. Thus,
\[5x^7 + 9x^6 + 16x^5 + 48x^4 + x^3 + 4x^2 + 71x + 1 \equiv x^7 + x^6 + x^3 + x + 1 \]

\[x^2 + 1 = 0 \] has no real roots. It’s irreducible.

Consider \((x + 1)^2\) modulo 2

\[(x + 1)^2 = (x + 1) \times (x + 1) = x^2 + 2x + 1^2 \]

\[x^2 + 2x + 1^2 \equiv x^2 + 1 \pmod{2} \]
σ on polynomials

Definition

If \(\sigma(A) = A \), then \(A \) is a perfect polynomial.
σ on polynomials

Definition

If \(\sigma(A) = A \), then \(A \) is a perfect polynomial.

- For example, \(x^2 + x = x \times (x + 1) \)
\[\sigma \text{ on polynomials} \]

Definition

If \(\sigma(A) = A \), then \(A \) is a perfect polynomial.

- For example, \(x^2 + x = x \times (x + 1) \)
- \(\sigma(x^2 + x) = (x^2 + x) + (x + 1) + x + 1 = x^2 + 3x + 2 \)
σ on polynomials

Definition

If \(\sigma(A) = A \), then \(A \) is a perfect polynomial.

- For example, \(x^2 + x = x \times (x + 1) \)
- \(\sigma(x^2 + x) = (x^2 + x) + (x + 1) + x + 1 = x^2 + 3x + 2 \)
- \(x^2 + 3x + 2 \equiv x^2 + x \pmod{2} \)
σ on polynomials

Definition

If $\sigma(A) = A$, then A is a perfect polynomial.

- For example, $x^2 + x = x \times (x + 1)$
- $\sigma(x^2 + x) = (x^2 + x) + (x + 1) + x + 1 = x^2 + 3x + 2$
- $x^2 + 3x + 2 \equiv x^2 + x \pmod{2}$
- So $\sigma(x^2 + x) = x^2 + x \pmod{2}$
- $x^2 + x$ is a perfect polynomial mod 2.
E. F. Canaday

Gallardo and Rahavandrainy
Perfect polynomials mod 2 exist in two ways:
\[x^h(x + 1)^k A \text{ and } B^2, \] where B is relatively prime to \(x(x + 1) \)

Gallardo and Rahavandrainy

Proved that odd perfects have at least 5 distinct irreducible factors.
E. F. Canaday

Perfect polynomials mod 2 exist in two ways:
\[x^h(x + 1)^k A \text{ and } B^2, \] where B is relatively prime to \(x(x + 1) \)

Also, he found an infinite class of perfects:
\[x^{2n-1}(x + 1)^{2n-1} \]

Gallardo and Rahavandrainy
E. F. Canaday

Perfect polynomials mod 2 exist in two ways:
\[x^h(x + 1)^k A \text{ and } B^2, \text{ where } B \text{ is relatively prime to } x(x + 1) \]

Also, he found an infinite class of perfects:
\[x^{2^n-1}(x + 1)^{2^n-1} \]

Conjecture that every perfect is divisible by \(x(x + 1) \)
In other words, no odd perfects

Gallardo and Rahavandrainy
E. F. Canaday

- Perfect polynomials mod 2 exist in two ways: $x^h(x + 1)^k A$ and B^2, where B is relatively prime to $x(x + 1)$
- Also, he found an infinite class of perfects: $x^{2n-1}(x + 1)^{2n-1}$
- Conjecture that every perfect is divisible by $x(x + 1)$
 - In other words, no odd perfects

Gallardo and Rahavandrainy

- Proved that odd perfects have at least 5 distinct irreducible factors.
<table>
<thead>
<tr>
<th>Degree</th>
<th>Factorization into Irreducibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>$T(T + 1)^2(T^2 + T + 1)$</td>
</tr>
<tr>
<td></td>
<td>$T^2(T + 1)(T^2 + T + 1)$</td>
</tr>
<tr>
<td>11</td>
<td>$T(T + 1)^2(T^2 + T + 1)^2(T^4 + T + 1)$</td>
</tr>
<tr>
<td></td>
<td>$T^2(T + 1)(T^2 + T + 1)^2(T^4 + T + 1)$</td>
</tr>
<tr>
<td></td>
<td>$T^3(T + 1)^4(T^4 + T^3 + 1)$</td>
</tr>
<tr>
<td></td>
<td>$T^4(T + 1)^3(T^4 + T^3 + T^2 + T + 1)$</td>
</tr>
<tr>
<td>15</td>
<td>$T^3(T + 1)^6(T^3 + T + 1)(T^3 + T^2 + 1)$</td>
</tr>
<tr>
<td></td>
<td>$T^6(T + 1)^3(T^3 + T + 1)(T^3 + T^2 + 1)$</td>
</tr>
<tr>
<td>16</td>
<td>$T^4(T + 1)^4(T^4 + T^3 + 1)(T^4 + T^3 + T^2 + T + 1)$</td>
</tr>
<tr>
<td>20</td>
<td>$T^4(T + 1)^6(T^3 + T + 1)(T^3 + T^2 + 1)(T^4 + T^3 + T^2 + T + 1)$</td>
</tr>
<tr>
<td></td>
<td>$T^6(T + 1)^4(T^3 + T + 1)(T^3 + T^2 + 1)(T^4 + T^3 + 1)$</td>
</tr>
</tbody>
</table>

Figure: Canaday’s list for perfects
Check if $\sigma B = B$. Output B.
The Algorithm to Find the Perfect Polynomials

- Check if $\sigma B = B$. Output B.
- If not, compute D where $D = \sigma(B) / \gcd(B, \sigma(B))$
The Algorithm to Find the Perfect Polynomials

- Check if $\sigma B = B$. Output B.
- If not, compute D where $D = \frac{\sigma(B)}{\gcd(B, \sigma(B))}$
- If $\gcd(B, D) > 1$, then stop. No output!

Ugur Caner Cengiz
Perfect Polynomials
Student Symposium 2015
The Algorithm to Find the Perfect Polynomials

- Check if $\sigma B = B$. Output B.
- If not, compute D where $D = \sigma(B) / \gcd(B, \sigma(B))$
- If $\gcd(B, D) > 1$, then stop. No output!
- If the polynomial passes the test on step 3, then let P be the greatest factor of D.
Check if $\sigma B = B$. Output B.

If not, compute D where $D = \sigma(B) / \gcd(B, \sigma(B))$.

If $\gcd(B, D) > 1$, then stop. No output!

If the polynomial passes the test on step 3, then let P be the greatest factor of D.

Restart the algorithm taking $BP, BP^2, BP^3, ..., BP^k$ where degree of $BP^k < K$.
def primPerf(B):
 if B == sumDivs4(B):
 return B
 else:
 D = (sumDivs4(B)/gcd(B, sumDivs4(B)))
 if gcd(D,B) != 1:
 return False
 else:
 F = D.factor()
 P = F[len(F)-1][0]
 check = False
 K = 1
 while (B*(P^K)).degree() <= 1000:
 check = primPerf(B*(P^K))
 if check == False:
 K = K + 1
 else:
 return primPerf((B*(P^K)))
 break
Results up to degree 200

\[x \times (x + 1)^2 \times (x^2 + x + 1) \]
\[x \times (x + 1)^2 \times (x^2 + x + 1)^2 \times (x^4 + x + 1) \]
\[(x + 1) \times x^2 \times (x^2 + x + 1) \]
\[(x + 1) \times x^2 \times (x^2 + x + 1)^2 \times (x^4 + x + 1) \]
\[x^3 \times (x + 1)^4 \times (x^4 + x^3 + 1) \]
\[x^3 \times (x + 1)^6 \times (x^3 + x + 1) \times (x^3 + x^2 + 1) \]
\[(x + 1)^3 \times x^4 \times (x^4 + x^3 + x^2 + x + 1) \]
\[x^4 \times (x + 1)^4 \times (x^4 + x^3 + 1) \times (x^4 + x^3 + x^2 + x + 1) \]
\[x^4 \times (x + 1)^6 \times (x^3 + x + 1) \times (x^3 + x^2 + 1) \times (x^4 + x^3 + x^2 + x + 1) \]
\[(x + 1)^3 \times x^6 \times (x^3 + x + 1) \times (x^3 + x^2 + 1) \]
\[(x + 1)^4 \times x^6 \times (x^3 + x + 1) \times (x^3 + x^2 + 1) \times (x^4 + x^3 + 1) \]
\[x \times (x + 1) \]
\[x^3 \times (x + 1)^3 \]
\[x^7 \times (x + 1)^7 \]
\[x^{15} \times (x + 1)^{15} \]
\[x^{31} \times (x + 1)^{31} \text{ and } x^{63} \times (x + 1)^{63} \]
def sigma1(x, y):
 return \(\frac{x^{y+1} - 1}{x - 1} \)

def sigma2(x, y):
 sum = 0
 for pow in range(0, y + 1):
 sum = sum + \(x^{pow} \)
 return sum

sigma1 and sigma2 speed testing

Dynamic Programming
Our Research

Figure: FAST!

```python
import time
tic = time.clock()
sum = x^30
found = primPerf(sum)
if type(found) == type(x):
    print found, "="
    found.factor()
toc = time.clock()
toc - tic

perfFinder(15)

1 = 1
degree = 0

x^2 + x = x * (x + 1)
degree = 2

x^2 + x = x * (x + 1)
degree = 2
```
A perfect polynomial equals the sum of its divisors.

As Canaday thought there are no odd perfect polynomials up to degree 200.

My program is relatively fast and finds the perfect polynomials.

Future Plans

- To check higher degrees
- Show odd perfect polynomials mod 2 have at least 6 factors
- Work on a paper
For Further Information

E.F. Canaday
The Sum of The Divisors of a Polynomial.
Duke Mathematical Journal, 8(4):721–737, 1941

L. Gallardo. and O. Rahavandrainy.
Odd Perfect Polynomials over F_2

L. Gallardo. and O. Rahavandrainy.
There is no odd perfect polynomial over F_2 with four prime factors
Thank You!

(Any Questions?)