Class Year
2017
Date
12-15-2016
Document Type
Thesis
Distinguished Thesis
Yes
Degree Name
Bachelor of Arts (BA)
Department or Program
Mathematics
First Advisor
Enrique Treviño
Second Advisor
DeJuran Richardson
Third Advisor
Michael M. Kash
Abstract
From our early years of education we learn that polynomials can be factored to find their roots. In 1797 Gauss proved the Fundamental Theo-rem of Algebra, which states that every polynomial every polynomial can be factored into quadratic and linear products. Here we build up the necessary background in advanced complex analysis to prove a variant of the Fundamental Theorem of Algebra, namely that every polynomial has at least one complex root. The proof we show here uses Cauchy’s Integral Formula and Liouville’s Theorem, which we develop and prove. This leads us into the brilliant ideas of conforming complex maps into each other and the limits we can push complex functions to.
Language
English
Recommended Citation
Braubach, William, "The Fundamental Theorem of Algebra Analysis" (2016). Senior Theses.
https://publications.lakeforest.edu/seniortheses/94